o R {;‘
y hERY Pt

AD-A208 596

RADC-TR-87-213
in-House Report
November 1987

INCREMENTAL DIFFRACTION COEFFICIENTS
FOR PLANAR SURFACES, PART II:
Calculation of the Nonuniform Current
Correction to PO Reflector Antenna Patterns

Robert A. Shore and Arthur D. Yaghjian

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

DTIC

ELECTE
Jl%'os 1983

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

89 6 05 177




This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-213 has been reviewed and is approved for publication.

APPROVED: ] Z g W

RAYMOND J. CORMIER
Assistant Chief, Applied Electromagnetics Division
Directorate of Electromagnetics

APPROVED: % At .t

JOHN K. SCHINDLER
Acting Director of Electromagnetics

s 0 T

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (EEAS) Hanscom AFB MA 01731-5000. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE
REPORT DOCUMENTATION PAGE
} 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
“ T ——————————— Y T T A ———
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
. Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution unlimited
| 4. PERFOEMNG ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

RADC-TR-87-213

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

Rome Air Development Center EEAS

6¢. ADDRESS (City, State, and ZIP Code) 7b. ADODRESS (City, State, and ZIP Code)

Hanscom AFB

Massachusetts 01731-5000

8a. NAME OF FUNDING /SP-ONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION {If applicable)
8c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
61102F 2305 54 04

11. TITLE (Include Security Classification) Tncremental Diffraction Coefficients for Planar Surfaces, Part II{
Calculation of the Nonuniform Current Correction to PO Reflector Antenna Patterns

12. PERSONAL AUTHOR(S)
Robert A. Shore, Arthur D. Yaghjian

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPCRT (Year, Month, Day) h5 PAGE COUNT
In~house rrRom Jan 87 1o May 87 1987 November

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP $UB-GROUP ‘Diffraction coefficients

Incremental length
Reflector antenna
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

In Part I of this report, we provid?‘; general and convenient method, for determining
incremental length diffraction coefficients directly from the conventional two-dimensional
diffraction coefficients. This sequel provides a detailed analysis of how the nonuniform
incremental diffraction coefficients for the half-plane are integrated around the rim of a
reflector. These computed far fields of the nonuniform current, when added to the far fields
computed from the physical optics current, produce a more accurate total far field of the
reflector. Excellent agreement with the far fields obtained from a method of moments
golution to the electric field integral equation applied to a 20-wavelength-diameter reflecton
shows that the cross polarization, further-out sidelobes, and fields near nulls of reflector
antennas can be appreciably changed by the fields of the nonuniform currents. Finally, we
evaluate the fields of the nonuniform current of the reflector through conventional asymptotid]
evaluation of the diffraction integrals and compare these approximate results with the far
fields obtained by numerically integrating the nonuniform incremental diffraction coefficients

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CJuUNCLASSIFIED/UNLIMITED X3 SAME AS RPT. J oTiC USERS Unclassified
228, NAME OF RESPONSIBLE INDIVIDUAL - 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
Robert A. Shore (6l7) 377-2058 RODC/EEAS ‘
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.
Unclassified




Accession For ‘
NTIS GRA&I ﬁ

DTIC TAB O
Unannounced 0]
Justificatio

By

Distribution/

Avallabili_t_y_?q@es
_—{Z;ail and/or

Disat Special

“/\ I l Contents
1. INTRODUCTION 1
2. ANALYSIS 2
2.1 Incremental Diffraction Coefficients for the Nonuniform Current of the Half-Plane 3
2.2 Transformation to the Global Coordinate System of the Reflector 6
2.3 Incremental Transverse Far-Field Components 11
2.4 Feed Hlumination 13
2.5 Integration of the Incremental Fields 14
3. CALCULATIONS 15
3.1 Far Fields of a Thin Metal Paraboloid Reflector 15

3.2 Comparison With Nonuniform Fields Obtained by Asymptotic Evaluation of the
Diffraction Integrals 66
REFERENCES 72
Nlustrations
1. Geometry of a Half-Plane Illuminated by a Plane Wave 4
2. Global Coordinate System for Paraboloidal Reflector 6

ifi




3a.

3b.

3c.

4a.

4b.

4c.

5a.

5b.

5c.

6a.

6b.

E-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna With Primary Field
Included; - - ~ - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180° 155°)

H-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna With Primary
Field Included; — - -~ - PO, PO + Nonuniform Current Field,
FD = 0.4, 6 = [180° 155°]

¢ = 45° Cross-Polar Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna With
Primary Field Included; — - - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 8 = [180°, 150°]

E-Plane Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna With Primary Field
Included; — - - - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180° 155°)

H-Plane Phase Pattern of 20X Dipole-Feed Paraboloid Antenna With Primary Field
Included; — - - - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180° 155°]

¢ = 45° Cross-Polar Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna With
Primary Field Included; - — - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 8 = [180°, 150°)

E-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna With Primary Field
Included; - — ~ - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180°, 0°]

H-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna With Primary
Field Included; - - - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 8 = [180°, 0°)

¢ = 45° Cross-Polar Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna With
Primary Field Included; — — - — PO, PO + Nonuniform Current Field,
F/D = 0.4, 8 = [180°, 0°]

E-Plane Phase Pattern of 20\ Dipole-feed Paraboloid Antenna With Primary Field
Included; — -~ ~ - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180° 0°]

H-Plane Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna With Primary Field
Included; - - - - PO, PO + Nonuniform Current Field, F/D = 0.4,
0 = [180°, 0°]

iv

lllustrations

17

18

19

20

21

22

23

24

25

26

27




7a.

7c.

8a.

8b.

9a.

9b.

9c.

¢ = 45° Cross-Polar Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna With
Primary Field Included; — — — - PO, PO + Nonuniform Current Field,
FD = 0.4, 6 = [180° 150°)

E-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary
PO + Nonuniform Current Field,

F/D = 0.4, 6 = [180°, 155°]

H-Plane Amplitude Pattern of 20N Huygens-Feed Paraboloid Antenna With Primary
PO + Nonuniform Current Field,

FD = 0.4, 8 = [180°, 155

¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna
With Primary Field Included; — — -~ — PO, PO + Nonuniform Current Field,
F/D = 0.4, 6 = [180°, 155°]

E-Plane Phase Pattern o 20\ Huygens-Feed Paraboloid Antenna With Primary Field
Included; - ~ — - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180° 155°]

H-Plane Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary Field
Included; — - - ~ PO, PO + Nonuniform Current Field, F/D = 0.4,
8 = [180°, 155°]

¢ = 45° Cross-Polar Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna With
PO + Nonuniform Current Field,

F/D = 0.4, 8 = [180°, 155

E-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary
Field Included; ~ — - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 6 = [180°, 0°]

H-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary
Field Included; - - — ~ PO, PO + Nonuniform Current Field,
F/D = 0.4, 0 = [180°, 0°)

¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna
PO + Nonuniform Current Field,

F/D = 0.4, 8 = [180° 0°]

10a. E-Plane Phase Pattern of 20N Huygens-Feed Paraboloid Antenna With Primary Field

Included; — — — - PO, PO + Nonuniform Current Field, F/D = 0.4,
8 = [180° 0°]
10b. H-Plane Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary Field
Included; - - — ~ PO, PO + Nonuniform Current Field, F/D = 0.4,
8 = [180° 0°]
v

28

29

31

32

33

34

35

36

37

38

39




10c. ¢ = 45° Cross-Polar Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna With
Primary Field Included; -~ - - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 0 = (180° 0°] 40

11. ¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With
Primary Field Included; Spherical Near-Field GTD, — — — — Moment Method,
————PO. F/D = 0.4 (After Viskum and Bach??) 41

12a. E-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary
Field Not Included; — — - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 6 = [180° 155°) 42

12b. H-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary
Field Not Included; — - ~ - PO, PO + Nonuniform Current Field,
F/D = 0.4, 6 = [180°, 155°] 43

12c. ¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna
With Primary Field Not Included; — - — -~ PO, PO + Nonuniform Current
Field, F/D = 0.4, 6 = [180° 155°] 44

13a. E-Plane Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary Fieid Not
Included; - -~ - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180°, 155°] 45

13b. H-Plane Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary Field Not
Included; - - - - PO, PO + Nonuniform Current Field, F/D = 0.4,
8 = [180°, 155°) 46

13c. ¢ = 45° Cross-Polar Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary
Field Not Included; ~ - — - PO, PO + Nonuniform Current Field,
F/D = 0.4,0 = [180° 155°] 47

14a. E-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary Field Not

Included; — — - - PO, PO + Nonuniform Current Field,

F/D = 04,8 = [180°, 0°] 48
14b. H-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary Field

Not Included; — - - -~ PO, PO + Nonuniform Current Field,

F/D = 04, ¢ = [180° 0°] 49
14c. ¢ = 45° Cross-Polar Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna,

Primary Field Not Included; — - — - PO, PO + Nonuniform Current Field,

F/D = 0.4,6 = [180°, 0°] 50
15a. E-Plane Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary Field Not

Included; ~ - — - PO, PO + Nonuniform Current Field, F/D = 0.4,

8 = [180° 0°] 51




17a.

17b.

17c.

15b.

. 15c.

16a.

16b.

16c.

18a.

18b.

18c.

19a.

H-Plane Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary Field Not
Included; - - - - PO, PO + Nonuniform Current Field, F/D = 0.4,
8 = [180°, 0°)

¢ = 45° Cross-Polar Phase Pattern of 20\ Dipole-Feed Paraboloid Antenna, Primary
PO + Nonuniform Current Field,

F/D = 04, 6 = [180°, 0°]

E-Plane Amplirude Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary Field
Not Included; ~ - - - PO, PO + Nonuniform Current Field,
F/D = 0.4, 6 = [180°, 155°)

H-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary Field
Not Included; - — — - PO, PO + Nonuniform Current Field,
F/D = 0.4, 0 = [180° 155°]

¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna,
Primary Field Not Included; - - — — PO, PO + Nonuniform Current Field,
F/D = 0.4, § = [180°, 155°)

E-Plane Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary Field Not
Included; — — - - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180° 155°]

H-Plane Phase Pattern of 20N Huygens-Feed Paraboloid Antenna, Primary Field Not
PO + Nonuniform Current Field, F/D = 0.4,

6 = [180°, 155°]

¢ = 45° Cross-Polar Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna,
PO + Nonuniform Current Field,

FD = 0.4, 6 = [180° 155°)

E-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary Field
Not Included; - — - - PO, PO + Nonuniform Current Field,
FD = 0.4, 6 = [180° 0]

H-Plane Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary Field
Not Included; - — - ~ PO, PO + Nonuniform Current Field,
F/D = 0.4, 6 = [180°, 0°]

¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna,
PO + Nonuniform Current Field,

FD = 0.4, 0 = [180°, 0]

E-Plane Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary Field Not
Included; - — - - PO, PO + Nonuniform Current Field, F/D = 0.4,
8 = [180° 0°)

vii

52

53

54

55

56

57

58

59

60

61

62

63




19b.

19c¢.

20.

21a.

21b.

22a.

22b.

H-Plane Phase Pattern of 20X Huygens-Feed Paraboloid Antenna, Primary Field Not
Included; - — - - PO, PO + Nonuniform Current Field, F/D = 0.4,
6 = [180°, 9°]

& = 45° Cross-Polar Phase Pattern of 20\ Huygens-Feed Paraboloid Antenna, Primary
Field Not Included; — - — ~ PO,
0 = [180°, 0°]

Geometry for Stationary Phase Evaluation of the Nonuniform Current Field

E-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna; Asymptotic,
Eq. 53 Numerical Integration, Eq. 47; F/D = 0.4, 6 = [180°, 0°]

H-Plane Amplitude Pattern of 20\ Dipole-Feed Paraboloid Antenna; Asymptotic,
Eq. 54 Numerical Integration, Eq. 48; F/D = 0.4, 6 = [180°, 0°]

H-Plane Amplitude Pattern of Nonuniform Fields of 20\ Dipole-Feed Paraboloid
Antenna; Asymptotic, Eq. 54 Numerical Integration, Eq. 48; F/D = 0.4,
= [180°, 0°)

H-Plane Phase Pattern of Nonuniform Fields of 20A Dipole-Feed Paraboloid Antenna;
Asymptotic, Eq. 54 Numerical Integration, Eq. 48; F/D = 0.4,
8 = [180°, 0°)

viii

PO + Nonuniform Current Field, F/D = 0.4,

64

65
68

69

70

71

72




Incremental Diffraction Coefficients for Planar Surfaces, Part Ii:
Calculation of the Nonuniform Current Correction to PO
Reflector Antenna Patterns

1. INTRODUCTION

Numerous computer codes exist for calculating the far fields of reflector antennas by integrating
either the physical optics (PO) current or the aperture fields obtained from geometrical optics (GO).}:2
Both the PO current integration and the GO aperture-field integration produce far fields with reasonable
and comparable accuracyt out to a sidelobe angle that depends upon whether the edges of the reflector
are sharp, flared, absorber-lined, serrated, etc.? In particular, for antennas with locally wedge-shaped
conducting edges, both PO current and CO aperture-field integration predict nearly the correct copolar
fields out to 20° or more.4 However, even for perfectly conducting reflectors with wedge-shaped edges,
the PO current or GO aperture-field integrations neglect the nonuniform currents® or fields® near the
edges and thus fail to produce reliable cross-polarized fields, far-out sidelobes of the copolarized fields
and fields near nulls.” Thus a number of techniques have been used to improve the accuracy of PO
current and GO aperture-field integrations.

The geometrical theory of diffraction® (GTD) or the physical theory of diffraction> (PTD) can be
used to calculate more accurately the far-out sidelobes of reflectors. However, GTD introduces the
problem of matching smoothly the far-out sidelobes to the near-in sidelobes, and both PTD and GTD,
when applied directly to obtain the far-fields, fail (for a general illumination) to produce accurate co-
and cross-polarized fields in the mainbeam region (which is a focal region for the GTD and PTD
diffraction coefficients). Morcover, if conventional GTD or PTD is used to first calculate fields on a
near-field surface before performing an aperture-field integration to obtain the far fields,”? one is still

(Received for publication 27 October 1987)

tThe accuracy of the PO current and GO aperture-field integrations is comparable, provided the aperture surface
used in the field integration caps the reflector.?




faced with the problem of computing accurate near fields in the focal regions. Also, conventional GTD or
PTD is not well suited for computing end-point contributions such as from corners, even if higher order
distortions of the current near the end-points are neglected.

To overcome this problem of computing fields in caustic and end-point regions, Mitzner!®
introduced PTD ‘‘incremental length diffraction coefficients,” which, when multiplied by the incident
field, could be integrated along the rims of reflectors (for example) to obtain the diffracted fields of the
nonuniform current for arbitrary angles of incidence and scattering. Mitzner obtained explicit expressions
for the incremental diffraction coefficients of the perfectly conducting wedge. More recently, Michaeli,!!
unaware of Mitzner's report, derived expressions for the GTD incremental diffraction coefficients of the
wedge, and Knott!? has shown that if the PTD incremental diffraction coefficients for the wedge are
subtracted from the GTD coefficients, the result is the PO incremental diffraction coefficients. (The
concept of incremental diffraction coefficients was used implicitly in work that preceded that of
Mitzner,!° notably that of Ufimtsev,> Braunbek,® Millar,}3-15 and the “‘equivalent (edge) current” work of
Ryan and Peters.!® However, this previous work used approximate ad hoc expressions for the incremen-
tal fields that did not necessarily agree with the diffracted fields outside the focal regions.)

Part 117 of this work reviews more thoroughly the key references leading to GTD and PTD
incremental diffraction coefficients, and provides a general and convenient method for determining
incremental length diffraction coefficients directly from the conventional two-dimensional diffraction
coefficients. The main purpose of this sequel (Part II) is to provide the detailed analysis of how the PTD
incremental diffraction coefficients for the half-plane are integrated around the rims of reflectors to
obtain the far fields produced by the nonuniform currents. These computed far fields of the nonuniform
current are added to the far fields computed from the PO current. Excellent agreement with the far
fields obtained from a method of moments solution to the electric field integral equation applied to a
20-wavelength-diameter reflector with an 8-wavelength focal length?-20 shows that indeed the cross-
polarization, further-out sidelobes, and fields near nulls of reflector antennas can be appreciably changed
by the fields of the nonuniform currents.

Finally, we evaluate the fields of the nonuniform current of the reflector through conventional
asymptotic evaluation of the diffraction integrals and compare these approximate resuults with the far
fields obtained by numerically integrating the nonuniform incremental diffraction coefficients.

2. ANALYSIS

We wish to improve upon the PO approximation to the far field of a parabolic reflector antenna by
taking into account the fact that, in the close vicinity of the rim of the reflector, the PO current does not
accurately represent the total current excited on the reflector surface. The total current on the redector
surface, K, can be represented as the sum of the PO current, K?O, and the nonuniform current, K™,
which is prominent only near the reflector rim and which decays rapidly away from the rim. Correspond-
ing to the representation of the total current as

K = KFO + K™

is the representation of the total electric far field scattered by the reflector, Eg, as the sum of the PO far
field, EPO, and the far field of the nonuniform current, E™; that is,




E, = EPO + Em ¢y

with the far field given in terms of surface integrals of the respective currents. The far-field contribution of
the nonuniform current can be found by subdividing the rim into differential lengths, determining the far
field of each such differential length, and integrating this far field over the rim of the reflector.

The far field of a differential length (the incremental diffraction coefficient) can often be well
approximated by the corresponding far field of a canonical scatterer that conforms to the reflector at the
rim and that is excited by a plane wave whose propagation vector is in the direction from the feed to the
rim element and whose amplitude and phase at the point of incidence are those of the feed radiation. In
general, the rim of the reflector may not conform to a canonical scatterer with 2 known incremental
diffraction coefficient. However, the rims of many reflectors are well approximated locally by perfectly
conducting wedges. Incremental diffraction coefficients for the perfectly conducting wedge have been
derived by Mitzner!? for the nonuniform current, Michaeli!! for the total current, and Knott!? for the PO
current. (Since the total current is the sum of the PO and nonuniform currents, any two of the coefficients
determine the third.) For simplicity here, we will consider the special, though important, case of a
parabolic reflector whose rim can be modeled locally by an infinitesimally thin, perfectly conducting
half-plane. The correction, E™, to the PO reflector far field is thus obt2.ned “y integrating the nonuniform
current incremental diffraction coefficient for the half-plane around the reflector rim.

2.1 Incremental Diffraction Coefficients for the Nonuniform Current of the Half-Plane

The half-plane nonuniform current incremental diffraction coefficient, dE™ (¥), is given by

dE™ () = dE; () — dEFO (© (2)

where dE, (f) and dEPO (¢) are the half-plane incremental diffraction coefficients for the total current and
PO current respectively, and 7 is the vector from the rim point to the far field point. Expressions for dEs (F)
and dE "© (1) for the perfectly conducting wedge were derived in Part I and shown to agree with Michaeli
and Knott (and thus indirectly with Mitzner) as a check on our general method for obtaining incremental
diffraction coefficients. (The total incremental diffraction coefficients for a perfectly conducting half-plane
were also derived directly in Part 1.) Specifically, the half-plane incremental diffraction coefficients may be
expressed as follows:

a . $o

—_ ke 4 sin = sin —
dE™ r2» — dz'E., e* sin 8 2 2 .

s e gmr sin28p COs a+cos &y b (3)
dEPOTM) (7 - dz'si _ e sinf 2sindy
dE (f) == — d2’ sign(m — bo)Ei 47r sin? 0, cos a+cos dg b €}
— ) 4 cos £ cos Po
JETE () rae — dz'Zo—ii X 2% 35 1

sin 8g 47r cos a+cos ¢y sin a

- [sin & & — (cos & cos & + cos a sin 6 cot Bp) 9] (5




and

Hy, ik 2

9E PO(TE) (& P _
dE (f) == —dz’ sign(m = o) Zo sin 8y 4mr cos a+cos ¢g

- [sin bd ~ (cos ¢ cos & ~— cos dp sin 6 cot 8g)] ©)
where 0 < ¢ < 2w and

= -1({sin@
a = cos (__—sin B cos d)). @)

In these expressions, dE.™ (F) and dE O™ (t) are the incremental diffraction coefficients for the total
and PO currents, respectively, for a half-plane illuminated by a TM (E-polarized) plane wave, and a_EIE(?)
and E:OCI'E)@ are the corresponding diffraction coefficients for TE (H-polarized) plane-wave illumina-
tion. The half-plane is defined in terms of Cartesian coordinates (x,y,z) by the equationsy = 0, x = 0,
so that the edge of the half-plane coincides with the z-axis. The origin of the coordinate system is taken
to be at the differential element (incremental length) dz' of the half-plane edge. The directions of the
incident plane wave and the point of observation are given by the spherical coordinate angles (8¢, ¢,
and (6, ¢), respectively (see Figure 1). E;, and H;, are the complex amplitudes of the electric and mag-
netic components, respectively, of the illuminating plane waves parallel to the edge of the half-plane at
the origin, Zg is the free-space impedance, and r = |f|, the distance from the origin to the field point.

OBSERVATION OBSERVATION
Y4 DIRECTION z} DIRECTION
INCIDENT
EDGE OF PLANE WAVE
INCIDENT HALF-PLANE
PLANE WAVE ,

fl

)
m-fo

HALF-PLANE

Figure 1. Geometry of a Half-Plane Illuminated by a Planc Wave




The half-plane incremental diffraction coefficient for the nonuniform current and TM plane-wave
illumination is obtained by substituting Eq. (3) and Eq. (4) into Eq. (2) and using elementary trigono

metric identities to simplify the resulting expression to
bo
®

ek sin @ 2 sin 5~

dEMTM) &y ram dz’
dE () r dz' E;, —— 411 s|n290 ICOS —Ql +s|n
2

Similarly, the half-plane incremental diffraction coefficient for the nonuniform current and TE plane-wave
illumination is found, by substituting Eq. (5) and Eq. (6) into Eq. (2) and simplifying trigonometrically,

to e
dE™TE) () r20 — dz’ sign( — bg)Zo Hy elr 1
sin 8y 4mr b . j
sin 2 |cos -—| sin 5
[sin bbb~ [cos bcos b + (1 + 2 |cos | sin %) sin 0 cot 60] é} 9)

For arbitrarily polarized plane-wave illumination, the half-plane nonuniform incremental diffraction

coefficient is then obtained by summing Eq. (8) and Eq. (9)

Ha, ¢oc
cos ¢ cos 8 + (1 + 2|cos ==| sin >

+ sign(m — oe) Zg — ia ] sin B¢ cot 906)168
sin '2-

(10)

— sign (T — ¢o¢)Zo g sin dp $c’
2

with
11

-1 (sm 9( cos ¢c)

a = COs
sin Og,




We have inserted the subscripts *‘¢"" in Eq. (10) and Eq. (11), indicating that the subscripts are defined
with reference to a local coordinate system with origin at the incremental length, to clearly distinguish
these locally defined quantities from those defined with reference to the global coordinate system of the
reflector antenna introduced in the next subsection.

2.2 Transformation to the Global Coordinate System of the Reflector

The correction to the PO electric far field of the reflector antenna is obtained as indicated above by
integrating Eq. (10) around the rim of the reflector. Since all quantities in Eq. (10) are defined with respect
to a local coordinate system with origin at the differential element of the reflector rim, it is first necessary to
transform Eq. (10) to a global coordinate system which we will take here to be that shown in Figure 2.

The origin of the global coordinate system is the focus of the parabolic reflector of focal length F and
diameter D, and the z-axis is the axis of the reflector directed towards the center of the reflector. Primed
coordinates are used to indicate integration points on the reflector rim, and unprimed coordinates to
indicate the field points. It is also necessary to define the local coordinate system with origin at the point
of integration on the reflector rim. Since we are modelling the rim locally by the half-plane defined as

Aperture plane

e

g
|

P(x,y,2)

(r.

Vertex

|
|
|
4 L
|
|
l

Figure 2. Global Coordinate System for Paraboloidal Reflector
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shown in Figure 1 (the incident plane wave in Figure 1 corresponds to the ray from the feed at the focus
to the rim point), we want the local x-axis to be tangent to the reflector at the rim, normal to the rim, and
directed inward from the rim; and the local y-axis to be the inwardly directed normal to the paraboloid at
the rini. Thus

X¢ = —sin -92—'1‘" —~ cos % b (12)
and
Y¢ = —cos % £ + sin %é' (13)

with 8, the angle at the focus subtended by points on the rim, given by

1F
' -1 2D = —l(ﬁ
] tan (E)—z__I 2 cot D ) . (14)
D 16
Hence
=% X Je= -4 (15)

We now systematically express the locally defined quantities of Eq. (10) and Eq. (11) in the global
coordinate system. Starting with 0g,, the angle between the local unit z-vector, — &', and the ray —t' from
the rim point to the feed at the focus, it is apparent that 8¢, = /2 so that

cos Bg, = 0 (16a)
and

(16b)

i
—

sin Og,

Next, since ¢ is the angle between %, and the projection of —§' on the x¢ y; -plane (see Figure 2), we have

cgs bgr = —1' - Xefsin Bpe = sin 92— (17a)

and




sin ¢pge = —1' - Je/sin Bge = cos % (17b)
from which

cos -¢—2°£ = E;ez, "’ (18a)
and

sin 9% — (-ll-s;"—%)m (18b)

Proceeding to 8, the angle between Z, and the ray from the rim point to the far-field point,

~
) a

cos Qe = —¢' -t

But f¢, the unit vector from the rim point to the far-field point, is parallel to R, the unit vector from the
focus to the far field point. Hence

cos e = —¢’' - R

(sin ¢’ X — cos &' §) - (sin B cos dx + sin 0 sin &y + cos 62)
sin 0 sin (¢’ — ) (19a)

and

sin B = [1 — sin?0 sin?(¢’ — $))172 (19b)

where the positive root must be taken since 0 < 8, < 7. (For 8 = w/2, sin 8¢ = |cos(d’ — d)].)
The cosine and sine of ¢ are given by

cos oy = fp - Xe/sin O,

and

sin ¢y = & - Po/5in Oy .




Again, replacing ¢ by R and then switching to Cartesian components and simplifying trigonometrically,
we obtain

cos ¢p = [—cos %'- sin 0 cos(¢’ — &) + sin %' cos 0]/sin 6, (20a)
and
sin ¢¢ = [—sin %' sin 0 cos(d’ — ¢) — cos _ZL cos 0]/sin 0, (20b)

with sin 6, given by Eq. (19b). The angle a given by Eq. (11) is now also expressed in the global
coordinate system since sin 8g¢, sin 8, and cos ¢¢ are given by Eq. (16b), Eq. (19b), and Eq. (20a),
respectively. In particular,

- 12
sin § = (————1 §°s°‘) Q1)

with

]

cos a = sin 8, cos ¢ .

The unit vector 8, is transformed to the global coordinate system by starting with

8¢ = cos B¢cos deke + cos Ogsin deye — sin 02, ,

substituting global Cartesian component expressions for Xe, ¥¢, and 2, and simplifying trigonometrically,
thereby obtaining

8 = - [cos Becos &' (cos 92— cos ¢¢ + sin %' sin d)e) + sin O¢sin ¢>'] X
- [cos Oesin ¢’ (cos 7' cos ¢¢ + sin %I sin ¢() — sin B¢cos d)'] b4
0 _. 8’
- cos 0, (cos 7 sin be — sin = cos d)e) 2 (22)

with cos 8, sin 8¢, cos ¢¢, and sin ¢, given by Eq. (19a), Eq. (19b), Eq. (20a), and Eq. (20b) respec-
tively. A similar procedure gives




e = cos ¢’ (cos 92—, sin ¢ — sin ?’ cos dn) %

+ sin ¢’ (cos %— sin ¢¢ — sin % cos ¢¢) ¥

N 9’ A
- (sm 7 sin d¢ + cos 3 ¢os ¢¢) Z. (23)

Next, proceeding to e'%"/r; and replacing r; by r (see Figure 2),

eikre  eikr elk®—#"R)
S =S S (24)

where R is the distance from the reflector focus to the far-field oint. It is then simple to find that

£ - R = r' [sin 0’ sin 0 cos(d’ — &) + cos 8’ cos 8] (25)
where
¢ = —2E __ _ pgec? (‘0—') (26)
1+ cos 6’ 2

and 8’ is given by Eq. (14). The differential length dz; is given by

dzy = —r’ sin 6'dé’ = - 2F tan %' d¢’ 27
and, referring to Eq. (15), Ei,e and H;,¢ become

Eize = —Eig' (28a)
and

Hie = —Higp' (28b)

in the global coordinate system. Substituting explicit expressions for cos dge, sin 0ge, re, dzp, Eye, and
Hize in Eq. (9), and noting from Eqs. (17a, b) that 8¢¢, and hence also g¢/2, lies in the first quadrant for
the reflector geometry we are considering, gives

10




—_— ikR A 1
GEm (7) r2» S ' sin 0'd¢ple R — b ——
4R cos 2% +sin &
2 2
8 | 4 .
[(EW 2 sin 8, sin 2 d’ €} ZoHy 220050 |5 zomyy r d’of de 29)
sin —2- 3

where expressions in global coordinates have been derived above for all locally subscripted quantities.

2.3 Incremental Transverse Far-Field Components

Before integrating with respect to ¢/, it is desirable to obtain explicit expressions for dEg"(f) and
dEg“(r), since, when integrated, these will yield the 8- and ¢-components of the nonuniform current
electric far field (the radial comporent of the far field is, of course, zero). Thus, we let

U=ée'6~7=éc'$,u=$e'é,v=$e'$- (30)

Substituting Eq. (30) in Eq. (29) gives

*R .
dE:’“‘ @ ra» K il ¢ sin 0'do e—iki'R _a;_l___
4wk cos 2% +in &
2 2
6 ,
: [(EW 2 sin B¢ sin %"i b zgH oS beosbe) gy, S0 31)
sin = sin =
2 2
and
eikR
O 4R r' sin 8’ d¢’e"‘“ R ——T(%———;
coSs T+Sm -2-
cos os 0 sin
. [(Ew' 2 sin 08¢ sin ‘¢'?0£ + ZoHi¢- ——iesd_—( T — ZoHy ';% vy, (32)
sin 5 sin 5

To find o and 7, we start with Eq. (22), which can be represented as

0=~ akt + by + 2

so that

og=acos0cosd + bcosObsind — csinb (33)

11




and

7= —asind + bcosd. (34

Substituting explicit expressions for a, b, and ¢ from Eq. (22) into Eq. (33) and Eq. (34), and making the
convenient change of variable

u=d)'—¢ (35)

(suggested by the ¢' ~ ¢ dependence of cos 8¢, sin 8¢, cos g, sin ¢¢, a, and ©' - R) so that

cus ¢° = cous ¢ cos u — sin ¢ sin u (36a)

and

sin ¢' = sin ¢ cos u + cos ¢ sin u, (36b)

and substituting for cos 8¢, sin 8¢, cos ¢, sin b, from Egs. (19) and (20) leads to

o= — cos 8 sin u G7

(1—sin? 8 sin2 u)1/2

and

= cos u
T (1—sin? 0 sin2 u)1/2 (38)

Similarly, by starting with Eq. (23) for ¢, we obtain

- cos u
(1~sinZ 0 sinZ u)1/2

b= 39)

12




and

cos @sinu (40)

veT (1-sin2 0 sin? u)}/2

2.4 Feed Illumination

It is now necessary to specify the form of the feed illumination of the reflector. This is chosen to be

3 c"“"' ' A el e

E ==+ [a(®)cos ¢'6’ + d(0')sin ¢'d’'] (41a)
and

H = %k:—: [a(8)cos ¢'d’ — d(8")sin ¢'8’) (41b)

so that the E-plane is the xz-plane and the H-plane is the yz-plane. For an x-directed electric dipole source

a0) = cos 0',d(®) = -1, 42)

while for a Huygens source with an x-directed electric dipole and a y-directed magnetic dipole

a(®’) = 1 + cos ' ,d(®) = —(1 + cos §') . (43)
Thus
e"ﬂ" , eik"' ,
Eig = 5= d(8")sin ¢’ = =5— d(8')(sin ¢ cos u + cos ¢ sin u) (442)
and
el o , e ,
Hig = 57 a(8')cos ¢’ = 7 a(8")(cos ¢ cos u — sin ¢ sin u) , (44b)

applying Eq. (35). Substituting Eq. (44a) and Eq. (44b) in Eq. (31) and Eq. (32) and replacing dé’ by du
gives

13




nu ek .o k(' - #-R) 1
dEo (r) r=» 47R sin 8 due _W__Q—

cos T +sin >

{Zd(e )sin 8, sin — ¢ (sin & cos u + cos ¢ sin u)o

+ a(@’) {cos ¢ cos ?-glin b sin u (cos 8¢ cos bg o — sin de ) 45)
sin =
2
and
eikR s
o (0 22— sin 8’ du k"~ ﬁo—(l-—;
cos —2—' + sin 2
d)oc

[ 2d(8')sin 8,sin —— (sin ¢ cos u + cos ¢ sinu) 7

+ a(9") cos ¢ cos ‘f_im ¢ sin u (cos B¢ cos e T — sin e V)| . (46)
sin =
2

2.5 Integration of the Incremental Fields

While Eq. (45) and Eq. (46) can be integrated numerically as they stand, substantial simplification
as well as analytic clarification can be effected by eliminating those parts of the integrands that are odd
functions of u and hence vanish when integrated with respect to u from — 1 to 7. {Note from Eq. (15)
that in order to obtain the proper sign of the far field components, the integration must be performed
in the negative u or negative ¢’ direction, since this corresponds to integration in the positive z,
direction; see Eq. (15).] It is straightforward to show that all terms in dE" (F) containing sin ¢ and all
terms in dEg" (f) containing cos ¢ are odd functions of u so that

EQY (R) r=2#cos & et sin 0’ f-17 du ek —i"R) 1
0 47R - Por , . «

cos —2— +sin E
- |2d(8')sin 0, sin S‘M sinu o + a(8’) cos: (cos B¢ cos be 0 — sin de W) 47
sin =
2

and

1

Ep" ®) r=2=sin ¢ :I—RRR sin 0’ f—" du eke' ~FR) —Fu o
™ " cos ~?°-+sin %‘

¢oe

cosut — a(d) sin u (cos B¢ cos b¢ T — sin e v)] . (48)
si

. [Zd(e')sin B¢ sin — «
n32
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Thus E§*(R) and Eg“(l—!) vary as cos ¢ and sin ¢ respectively. If the co- and cross-polarized field components, E¢
and Eg, are defined according to Ludwig's third definition!8

Ew = Egcos & + Eg4 sin ¢, (492)
and
E: = Egsind — Eg cos &, (49b)

then there is no cross-polarized feld in either the E- or H-planes.

3. CALCULATIONS

In Section 3.1, we enhance the accuracy of the far field of the paraboloid reflector by numerically
integrating the nonuniform incremental diffraction coefficient around the rim of the reflector and adding
this correction or ‘“‘nonuniform” field to the PO fields of the reflector. The E-plane, H-plane, and
45°plane amplitude and phase patterns of a 20\ diameter reflector with F/D = 0.4 are computed for
both electric-dipole and Huygens sources feeding the reflector. Plots of the PO far fields and the PO plus
nonuniform far fields are shown with and without the primary far fields of the feed included. Excellent
agreement is found with the patterns obtained from the method of moments (surface integral equation)
solution of Bach, Viskum and Frandsen.”-20

In Section 3.2, we compare the amplitude and phase of the nonuniform far field calculated by
numerical integration of the nonuniform diffraction coefficient with that calculated by conventional
asymptotic evaluation of the diffraction integrals. Expected good agreement is seen except in the forward
and back caustic regions where the asymptotic expressions diverge to infinity.

3.1 Far Fields of a Thin Metal Paraboloid Reflector

The field of a paraboloid reflector was calculated by integrating the nonuniform current incremental
diffraction coefficient around the reflector rim and adding the result to the PO reflector field. The PO
field was obtained from the following formulation due to Rusch:1?

ikR 80 oikr'(1—cos 8 cos@’)
PO _ . el e
Ey” = ikF cos ¢ A 1+cos 0

{a®) cos 8 Uo®) ~ 12®)) - d(@)cos 8 Uo(®) + J2(®)]

— 2ia(8’) sin 0 tan(-e—') Jx(ﬂ)} sin 6'do’ . (50)




_—

ikR 80 aikr'(1—cos 6 cos 8')
PO _ _. , e e
Ed: ikF sin ¢ R o 1+cos 6’

~{a(®") UJo(B) + J2(B)] — d(8") Jo(B) — J2(B)]} sin 6°d0’ . (51)

In these equations, R, 8 and ¢ are the spherical polar coordinates of the field point; 8’ is now a variable
instead of being fixed at the angle subtended by the reflector rim as in Section 2; 8y is the angle at the
focus berween the z-axis and a ray from the focus to a point on the rim; a(8') and d(8') specify the feed

illumination [cf. Eqs. (41a,b)]; Jo and J; are the Bessel functions of order 0 and 2, respectively; 3 = kr’
sin 6 sin 6'; and r' = 2F/(1 + cos 0').

To enable comparison with the calculations made by Bach and Viskum”20 using a moment method,
the reflector diameter and focal length were taken equal to 20 and 8 wavelengths, respectively, and two
different feeds located at the reflector focus were used: a Hertzian x-directed electric dipole, and a
Huygens source with an x-directed electric dipole and a y-directed magnetic dipole. The co- and
cross-polarized field components, E., and E,, were calculated from Egs. (49a, b). In the results
presented below, the amplitude and phase are normalized 1o the amplitude and phase, respectively, of
the sum of the copolarized PO and nonuniform current field in the mainbeam direction of 8 = 180°.

First, we show the results of calculations in which the primary feed field is added to the secondary
reflector field, as was done in the calculations of Bach and Viskum. Figures 3a, b, ¢ show, respectively,
the dipole-feed antenna (co-polar) amplitude pattern for 6 from 180° to 155° in the E and H-planes
(recall that the cross-polar field is zero in these planes), and the cross-polar amplitude pattern in the
¢ = 45° plane. Figures 4a, b, ¢ show the corresponding phase patterns. Figures 5a, b, ¢ show the same
dipole-feed antenna amplitude patterns for 8 from 180° to 0°, and Figures 06a, b, ¢ show the correspond-
ing phase patterns. Figures 7a, b, ¢ through 10a, b, ¢ show the corresponding amplitude and phase
patterns for the Huygens-feed antenna. In all these patterns, the dashed line is the PO plus feed field,
and the solid line is the sum of the PO, nonuniform current, and feed fields, so that the difference
between the two curves is a measure of the importance of the nonuniform current field correction to the
PO plus feed field.

Comparison of our total (PO plus nonuniform plus feed) field patterns with the corresponding
patterns obtained by Bach and Viskum using a moment method, shown in Reference 7 as well as in a
more detailed and complete set of curves,?? shows very close agreement, in general, throughout. (Note
that in Bach and Viskum the main beam direction is given by 8 = 0° and an exp(jwt) time dependence
is used, so that their phases are the negative of ours.) As an example we have reproduced in Figure 11
the cross-polar amplitude patterns in the & = 45° plane obtained by Bach and Viskum?20 for the
Huygens-feed reflector antenna. Comparing Figure 11 with Figure 7c it is seen that the levels of the
sidelobe peaks of our total field pattern agree closely with those of Bach and Viskum's method of
moments pattern. Our null depths are somewhat decper than theirs, however. [This discrepancy in
cross-polar null depths for the Huygens source may be caused by the limited dynamic range of the
method of moments program,2® becausc the cross-polarized field in the 45° plane is the difference
between the E- and H-plane fields sec Eq. (49b), and the E- and H-plane fields for the Huygens source
are especially close in the forward region from 0° to 25° shown in Figures 7c and 11.]
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Figure 9b. H-Plane Amplitude Pattern of 20N Huygens-Feed Paraboloid Antenna With Primary Field Included;
—~~-~PO, PO + Nonuniform Current Field, F/D = 0.4, 6 = [180°, 0°]
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We now make some general comments on the patterns shown in Figures 3 through 10. Referring to
the dipole-feed antenna patterns of Figures 3 a, b, the effect of the nonuniform current field in the E-
and H-planes is masked by the primary dipole-feed pattern. In the ¢ = 45° plane (Figure 3c), however,
the primary dipole-feed cross-polar field is close to zero for 8 close to 180° and the effect of the
nonuniform current field is clearly seen, resulting in a raising of the nulls. In contrast, for the Huygens-
feed antenna, both the co- and cross-polar primary feed fields are close to zero near the forward
direction and, referring to Figures 7 a, b, ¢, the effect of the nonuniform current field may be seen in
the E- and H-planes as well as in the cross-polar field pattern for & = 45°. The effect is most striking in
the cross-polar pattern where the nonuniform current field corrects the PO plus feed sidelobe levels
upwards by as much as 6 dB.

Turning next to the pattern plot for the full range of 6, it is seen from Figures 5 a, b and 9 a, b that
the back lobes of the E- and H-plane patterns for both the dipole-feed and Huygens-feed antennas are
strongly affected by the nonuniform current field. In the E-plane, the nonuniform current field raises the
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back lobes, while in the H-plane the back lobes are lowered from the PO plus feed levels. In contrast,
referring to Figures 5¢ and 9c¢, the back lobes of the cross-polar PO plus feed patterns are changed very
little by adding the nonuniform cnrrent field.

In the next set of figures, we show the results of calculations in which the primary feed field is not
added to the secondary reflector field. These patterns are of more practical interest near the forward
direction, especially those for the dipole-feed antenna, since realistic feeds are highly directive and have
negligibly small radiation in the forward reflector region. Figures 12 a, b, ¢ show, respectively, the
dipole-feed antenna amplitude pattern for 6 from 180° to 155° in the E- and H-plane, and the cross-polar
amplitude pattern in the ¢ = 45° plane. Figures 13 a, b, ¢ show the corresponding phase patterns.
Figures 14 a, b, ¢ and 15 a, b, ¢ show the same dipole-feed antenna amplitude and phase patterns for
the full range of 6. Figures 16 a, b, ¢ through 19 a, b, ¢ show the corresponding amplitude and phase
patterns of the Huygens-feed antenna.
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Figure 11. ¢ = 45° Cross-Polar Amplitude Pattern of 20\ Huygens-Feed Paraboloid Antenna With Primary Field
Included; ——— Spherical Near-Field GTD, — — — — Moment Method, — —- — —~ PO. F/D = 0.4, (After
Viskum and Bach?%)
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Comparing Figures 12 a, b showing the dipole-feed antenna E- and H-plane amplitude patterns
without the primary feed ficld, with Figures 3 a, b showing the patterns with the primary field, we see
that, once the masking effect of the primary field is removed, the effect of the nonuniform current field
is principally to raise the PO null depths. This is the same effect that we have already noted above in
discussing Figures 7 a, b for the Huygens-feed antenna patterns where the inclusion of the primary
Huygens-feed field does little since it is close to zero in the forward reflector direction. The cross-polar
patterns without the primary field dipole field shown in Figure 12c are very close to the corresponding
patterns with the feed field shown in Figure 3c since, as noted above, the primary cross-polar dipole
feed field is close to zero in directions close to the mainbeam of the reflector. The Huygens-feed
antenna patterns without the primary field shown in Figures 16 a, b, ¢ are all, as expected, quite close
to the corresponding patterns shown in Figures 7 a, b, ¢ with the primary field included.
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Turning to the dipole-feed reflector patterns without the primary field for the full range of 8 shown
in Figures 14 a, b, c, we note that in the back directions (that is, 8 < 60°), the inclusion of the
nonuniform current field has very little effect on the PO pattern. This is explained by the fact that the
PO field in back of the reflector is very close to being equal and opposite to the primary feed field and
so, in the absence of the primary field, masks the effect of the nonuniform current field. In contrast, the
effect of the nonuniform current field in the back directions is seen much more strongly in Figures 5 a,
b since in these patterns the PO field is largely cancelled by the primary field. A very similar effect is
noted for the Huygens-feed reflector patterns without the primary field shown in Figures 18 a, b as
compared with the patterns with the primary field shown in Figures 9 a, b. The mid-portion (130°-60°)
of the E-plane and the cross-polar patterns of both the dipole- and Huygens-feed antennas is strongly
affected by the nonuniform current field.

3.2 Comparison With Nonuniform Fields Obtained by Asymptotic Evaluation of the Diffraction
Integrals

In the previous section, we enhanced the accuracy of the PO far fields of a 20\ diameter, 8\
focal-length reflector by adding the far fields of the nonuniform current near the rim of the reflector.
These far fields radiated by the nonuniform current were obtained by integrating numerically the
incremental diffraction coefficients in Eq. (47) and Eq. (48), which were derived assuming the nonuni-
form currents near the rim of the thin metal reflector are equal locally to those of a half plane tangent
to the reflector at the rim.

Alternatively, we can evaluate the integrals in Eq. (47) and Eq. (48) asymptotically by the method of
stationary phase to obtain closed-form approximate expressions for far fields radiated by the nonuniform
current. Since the rim of the reflector is a smooth circular edge many wavelengths in diameter, the method
of stationary phase should produce a very good approximation to the integrals except near the forward and
back directions of the reflector, that is, near the caustics of the far-field rays emanating from the rim of the
reflector.

Specifically, the two points of stationary phase are simply the two intersections of the rim of the
reflector with the plane formed by the far-field direction and the axis of the reflector. The contribution
from each of these two stationary points of diffraction can be found from the equations in Section 6.2 of
Kouyoumjian?! when the GTD diffraction coefficients in Eq. 6.32 of Kouyoumjian are replaced by the
nonuniform (PTD) diffraction coefficients for the half plane,>

. o
pou = 2™ 02 (52a)
V2rk | cos %|+sin%
Dnu —_ - Zei"/" . ¢ COS% 52b
TE Vauk sign(T 0) ) 3 (52b)

|cos —29-| +sin 3
Eq. (52a) and Eq. (52b) can also be ascertained by comparing D, and Dy, in Eq. 6.32 of Kouyoumjian

with our Egs. (3,8) and (5,9), respectively, for 6 = 8y = /2. Substitution of the 2 — D nonuniform
diffraction coefficients Eq. (52) into Eq. 6.30 of Kouyoumjian for the two points of stationary phase on the
rim of the reflector shown in Figure 20, yields the following asymptotic approximations for the E- and
H-plane fields radiated by the nonuniform current:
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e —imD cos(8~8)Asin 8 g 9_!, je ~imD cos(8 + 8 )\ sin 8 g _6_2

D) el(kR +7/4)
EQ¥(8) = —Hip Zo - — + "y (53)
2sin® 2wR sin(@ +8 ) +sin LI sin(L—+ 8 ) +sin 8
2 2 2 2
3 (E-plane)
1] ¢ i(kR+7/4) ' ' [ —inD cos(9~6"),% sin 0’ ie— 1ML cos(B + 6')/\ sin 8
A /_D) el g'+0'\le ©-6; ie @+8)
Enu(e) = —E](‘) . cos ( ) ' 3 - 3 ! (54)
® Zsin§ 27R 2 lsmg+e )+Sinﬁ Sin(g +0 )+sm@
2 2 2 2
(H-plane)

where all the parameters in Eq. (53) and Eq. (54) have been given previously except for the fixed angle
that the tangent plane at the rim makes with the z-axis,

6, and 0, which are given in terms of 0 as

9_2'n'--(9+B'), 0<6<2wr-p
‘—{41r-(e+3'), 211'—B’<0<2'rr]

e_2-rr—(9—B’), B'<6<2'n']
2_[3'—9, 0<0<p |

and Hj4 and Eyy , the incident magnetic and electric fields at ¢’ = 0 and /2, respectively, of the electric
dipole or Huygens feed illuminating the rim of the reflector.

Figures 21a and 21b compare the E-plane amplitude and phase patterns (radiated by the nonuniform
current) computed from the asymptotic expression, Eq. (53), (dashed line) and from the numerical
integration of Eq. (47) (solid line) for the dipole fed reflector 20\ in diameter with F/D equal to 0.4.
Figures 22a and 22b compare the nonuniform H-plane patterns for the same antenna computed from
Eq. (48) and Eq. (54). As expected, the agreement is excellent except in the important caustic regions
around the forward and back directions where the asymptotic expressions diverge to infinity. The apparent
discrepancy in the E-plane amplitude pattern (Figure 21a) near § = 55° is misleading. It is caused by the

, discontinuity in the diffraction coefficients along the face of the half-plane when the incident plane wave is
transverse electric [see Fa. (52h)]. This discontinuity appears as a large phase jump (= 180°) in the
asymptotic field Eq. (53), yet as a small amplitude jump. The fields computed from the numerical investiga
tion in Eq. (47), however, are continuous, so that the 180° phase jump near 55° becomes a continuously yet
rapidly varying field that goes through a null as shown by the solid curve of Figure 21a. Fortunately, the
effect of the fields of either the solid or Hashed curves of Figures 21a and 21b near 55° on the total field of
the reflector are negligible compared to the PO fields near 55°.
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